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Plane and axisymmetric hypersonic gas flows are considered with shock 

waves of very great intensity that have a power-law form. On the basis 

of an investigation of the portions of the flow with high entropy ad- 

joining the surface of the body (not necessarily for a shock wave of the 

given form) it is shown that the use in the flow problem of the exact 

solution for the corresponding unsteady self-similar gas motion requires 
a supplementary refinement of the thickness of the high entropy layer. A 

method is shown for introducing such a correction and constructing the 

shape of the body contour, on which is to be applied the pressure dis- 

tribution obtained on the basis of the theory of small disturbances. 

1. According to the theory of small disturbances in a hypersonic 
stream the problem of flow past a plane or axisynvnetric body of small 
thickness ratio is equivalent to the problem of one-dimensional unsteady 
gas motion under the action of a plane or cylindrical piston [ 1 I . In 
this analogy the class of self-similar motions with very intense shock 

waves propagating according to a power law 12 1 corresponds to a class 
of steady flows with shock waves of power-law form 

y=cxm (1.1) 

with the Mach number of the undisturbed stream I!!_+ 00. Values of the ex- 

ponent II lying in the interval 2/(3 + u) < n < 1, where v = 0 for plane 

and v = 1 for axisymnetric cases, correspond to flows past convex bodies 
of power-law form [3 ] 

y = cxn (14 

The case R = 2/(3 + v) is singular and corresponds to the problem of 

a strong explosion [ 2 I. Since c/C = 0 in this case, its interpretation 

as a flow problem consists in the assumption of a finite drag force 
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acting on the leading edge of a body of vanishing thickness. In other 
vords, there is an analogy between the appearance of a strong explosion 
and the effect of blunting the leading edge of a slender body at large 

distances from the bluntness [4,5,6 I. 

2. The theory of small disturbances of a hypersonic stream is invalid 

in the neighborhood of the vertex of the shock wave (1.11, since for 
n < 1 the velocity disturbances are finite there. The value of the 

entropy on stream lines that intersect the shock wave in that region 
varies rapidly, and on the surface of the body ($ = 0) the entropy be- 
comes infinitely large, so that the density there becomes equal to zero. 

As a result, the region of inapplicability of small-disturbance theory 
comprises all high-entropy portions of the flow, bordering the surface 
of the body. We consider in more detail the flow in that region. 

3. The equations of plane or axisymnetric gas flow, after the von 

Mises transformation from independent variables x, y to independent vari- 

ables x, $ (where $ is the stream function), can be written in the form 

“Y PUY- 
aY v -=_ 
ar u 

u2 + 27 va+-.--_ p --urn2 
r-l P (3.5) Fig. 1. 

Here u, v are the components of the velocity vector, p the pressure, 
p the density, and y the ratio of specific heats of the gas. Here and 
henceforth the index 8 refers to conditions in the undisturbed stream, 
where we neglect the static pressure. ‘lhe boundary conditions on the 
shock-wave surface (1.1) have the form 

(r, = +& pm u, c’+’ 2 (l+“), 

P= y&Pm urn2 1 +yy;;;:_, 9 p = +g pco 

u=u, 1-L 
( 

nacaz2n-2 

) 
v=2u, 

nCx”-’ 

7 + 1 1 +nzC*~~“-~ ’ r+l 1 + nW2 z?+~ 

(3.61 

‘lhe corresponding relations in the small-disturbance theory are ob- 
tained by taking u = U= 
1 + .q?x2n-- l Sz 1 

in Equations (3.1)-(3.4) and taking 
in the boundary conditions (3.6) for G, v, p and p. 



758 v. v. sychev 

4. 'Ihe exact relations of Paragraph 3 are used for an estimate of the 

pressure change across the entropy layer at the surface of the body. We 

define this layer as the flow region comprising the stream lines that 

intersect the shock wave surface near its vertex, where the angle of in- 

clination of the surface to the free-stream direction is not small 

'Ibis condition together with (3.6) for I) gives the following estimate 

for the change in stream function across the entropy layer 

(4.2) 

At sufficiently large distances from the leading edge of the body the 

transverse velocity component 'o is proportional to the local angle of 

inclination of the shock surface (r), and the pressure to the square of 

this angle: 

Substituting these estimates into Equation (3.1) we find that the 

relative change in pressure across the entropy layer is 

Therefore 

(4.4) 

Since, as is easily seen, the small-disturbance theory involves just 

the same limit of accuracy, the change in pressure can be neglected. 

Hence it follows that the relationship p(x, $1 obtained on the basis 

of this theory (but not, as we see, p(x, y)) is, for the range of n under 
consideration, valid in the whole flow field except for the neighbor- 

hood of the vertex of the shock wave. 

5. For an estimate of the relative thickness of the entropy layer, 

Equations (3.2) and (3.3) are used. From the candition of Constance of 

entropy along stream lines (3.2) and the boundary conditions (3.6) for 

p and p we find that along the entire entropy layer 

P PO0 urn2 --- g= r-t1 
PY WP, lY ( 7 -1 i 

(5.1) 

Using the estimate (4.3) for the pressure p, we obtain the following 
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estimate for the density 

2 

p - liTp,G- (5.2) 

Taking u * U, and using (3.31 we find that the relative thickness of 

the entropy layer is* 

AY 
n use 2 

-+1--n-y 

Y 
(5.3) 

It is negligibly small only for 

(5.4) 

Fig. 2. 
‘lhis means that in the range of values 

of y of practical interest there exists a 
definite interval of values of the 

exponent n, 2/(3 + V) < n 6 n* (Fig, 2), where proper consideration of 

the thickness of the entropy layer is necessary, for example, in deter- 
mining the body contour for a given shape of shock wave, ‘Ihen in the 

solution of such a problem on the basis of the approximate snall-dis- 

turbance theory, the region of entropy effect often proves to be thick 
and the corresponding body contour is found with large error. Thus for 
determining the relative thickness of the entropy layer we use in this 
case, together with the condition (3.6) for p, the approximate relation 
on the surface of the shock wave of the fonn 

p = & pooU,2 n2 C2xtn-2 

This, together with (5.2), leads to the following 

density 

P_Kp,r+&7 '-L 

2-2n 

i ! 

n (1fv) Y 

Pa0 UC0 

(5.5) 

estimate for the 

(5.6) 

The result of integrating Equation (3.3) across the entropy layer is 

n (l+v) 2 Ay N __--~ --N-T 1-n Y 

Y K 
(5.7) 

* Estimates analogous to (4.4) and (5.3) for the case u = 0 were recent- 
ly obtained in the work [ 8 1. 
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2 l--n -1 WI-yrn(lr;T) 
‘lhe factor N increases with reduction of y and n (Fig. 3), so that 

the thickness of the entropy layer determined on the basis of small- 

disturbance theory may in many cases exceed its actual thickness. 

N N 

5 - 5 

?b----dh k---- 
n I? 

a b 

Fig. 3. 

6. ‘Ihus the use of exact solutions for self-similar gas motion [ 2 1 
in the case of flows with n < n* requires special refinement of the 
entropy layer which (for a given shock wave shape) should lead to a cor- 
responding correction of the contour of the body. ‘Ihe pressure distribu- 
tion on the surface of the body obtained with the use of exact self- 
similar solutions should, in accordance with paragraph 4, be applied to 

the new body contour. The practical determination of the body shape cor- 

responding to a given shock wave shape (3.1) is conveniently carried out 
by integrating Equation (3.3) across the entire flow field for a series 

of fixed values of x. In so doing the function p(n, $) is known from the 
self-similar solution for a given shock wave, and the relationship 

P 
- = cp(N 
PY 

is found from the exact boundary conditions (3.6) for 9, p and p. ‘Ihe 

velocity vector component u appearing in (3.3), which was above assumed 
to be u * U’ in carrying out estimates, must now be made more precise. 
Since everywhere except in the neighborhood of the vertex of the shock 
wave v/u * 7 , we have on the basis of the energy Equation (3.5) 

(6.2) 

with a relative error of order r 2. Substituting here the estimates ob- 
tained previously (4.3) for p and (5.2) for p, we obtain 

(6.3) 
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Hence follows the incorrectness of the hypersonic equivalence prin- 

ciple ("law of plane sections") in the entropy layer, and the necessity 

of using Formula (6.2) for the determination of u (with the necessary 

degree of accuracy). This equation completes the system of relations 

necessary for the solution. 

7. The usual results of integration of the equations of self-similar 

gas motion appear in the form of the relations 

v = 3, (2) f(h), p = Ps g (A), P = Ps (2) h(h) i" = $1 (7.1) 

where index s refers to conditions on the shock wave. 'Ihestream function 

of the self-similar motion necessary for the calculation, which 

the differential equation 

is easily found in the form 
A 

lhis determines the function p(x, n) which we ~a.1 now write, 

(5.5), in the form 

p = *pmUm2n2C2--$$&j 

satisfies 

(7.2) 

using 

(7.4) 

The entropy distribution function is found from the conditions (3.6) 

for I,!?, p and p and may, with consideration of (7.3), but put in the form 

Eliminating p from the last tuo equations we find p, and then using 

Equation (6.2) we determine u; then we obtain 

where 

(7.7) 

With the replacement of the independent variable $ by 7, Equation 
(3.3) is put in the form 
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Substituting here the determined functions p(x, v), u(x, r]) and inte- 

grating for fixed x, we obtain an equation determining the shape and 

location of the stream lines in the flow under consideration: 

'Ihe new contour of the body is determined by this equation if the 

upper limit of integration is set equal to zero. 

I / / 
16 2c 3YF----- x 

Fig. 4, 

8. As an example of application of the result obtained we consider 

axisynmetric flow with a shock wave of the form 

The calculations were carried out for the case y = 1.4. The functions 

(7.1) were taken from the tables given in the work I2 I. ‘Ihe results of 

the calculations are given in Figs. 4 and 5. From consideration of the 

Fie;. 5. 

relations obtained it is evident that the relative thickness of the body 

contour determined on the basis of Equation (7.9) 

(S.‘) 
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is negligible only in the region of very large values of n (as a unit of 

measure for x we take the radius of curvature of the shock wave at its 

vertex). 

Thus the pressure distribution ascribed on the basis of the analogy 

with a strong explosion to a cylinder with a blunted nose section is in 

actuality realized on a body of significantly large relative thickness. 

It appears that this may explain the serious quantitative disagreement 

thus obtained for the pressure distribution on the surface of a cylinder 

Fig. 6. 

with a hemispherical nose section with the results of numerical calcula- 

tions I7 I for a Mach number &, = 20, reproduced in Fig. 6, where the 

abscissa is the relative arc length along the body, measured from the 

critical point. 

In conclusion we note that the self-similar solutions in all cases 

certainly retain their significance as asymptotic representations of the 

exact solution for x + m. 

'Ihe author thanks M.N. Kogan and G.I, Taganov for valuable discussion 

of questions raised in this v.ork. 
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